Coalitional Game Theory for Micro-Gird Distribution Networks

Zhu Han

Associate Professor, IEEE Fellow

University of Houston

Walid Saad1 and H. Vincent Poor2

1 Virginia Tech., VA, USA; 2 Princeton University, Princeton, NJ, USA;

1

Outline

- Micro-grid Distribution Networks
 - Overview
 - Challenges
- Cooperative Energy Trading in Micro-Grids
 - System model
 - Coalitional game
 - Preliminaries
 - Game formulation
 - Coalition formation algorithm
- Simulation Results
- Conclusions

Smart Grid

- Key features:
 - Integration of microgrids, diverse generation and storage resources
 - Incorporating "smart" demand-side management,
 - The three "s": self-healing, self-optimizing, self-configuring
 - Communications: handling
 large amounts of data and securing this data (e.g., PMU data)
- Many definitions found: IEEE, DOE, Wiki, FERC
- We are continuously defining the smart grid through research!

Micro-grid Distribution Networks

• Components

OIS INSTITUTE OF TECHNOLOG

- Electrical substations that link to the high voltage **transmission network**
 - Composed of transformers and serving an area or city
- Distribution wiring
 - Distributed energy sources or **micro-grids**
 - E.g., Solar or Wind farms
- Role of micro-grids
- Can act autonomously and/or in coordination with the main **macro-grid**
- Serve as a backup to the main **macrogrid** whenever there is an extensive demand
- Can request energy from the macro-
- galvin^{grid}, if needed to service small areas

Information flow

(((•)))

Microgrid

Power & Energy Society

Power flow

Micro-grid networks: Challenges

- When should the micro-grid energy sources act on their own or coordinate with the grid?
 - Control theory is useful to study distributed decisions of the micro-grids
- Which areas should the micro-grids service?
 - Depends on demand and supply as well as the possible use of storage
- How can the micro-grids interact to trade energy within a local exchange market?
 - If micro-grids are "smart" and equipped with communication capabilities, they can interact and possibly trade energy

or electricity innovation at ILLINOIS INSTITUTE OF TECHNOLOGY

grid

Motivation for Game Approach

• What is Game Theory?

- The formal study of conflict or cooperation
- How to make an adversarial decision
- Modeling mutual interaction among players that are rational decision makers
- Components of a "game"
 - Rational Players with conflicting interests or mutual benefit
 - Strategies or Actions
 - Solution or Outcome

• Nobel prizes

IS INSTITUTE OF TECHNOLOG

- Nobel prize in Economic Sciences 1994 awarded to Nash, Harsanyi (Bayesian games) and Selten (subgame perfect equilibrium)
- 2005, Auman and Schelling, 2007 Leonid Hurwicz, Eric Maskin and Roger Myerson

Coalitional Games Preliminaries

- Coalitional game (*N*,*v*)
 - A set of players *N*, *a coalition* S is a group of cooperating players
 - Value (utility) of a coalition v
 - User payoff x_i : the portion received by a player *i* in a coalition S
- Transferable utility (TU)
 - The worth v(S) of a coalition S can be distributed arbitrarily among the players in a coalition hence,
 - v(S) is a function over the real line
- Non-transferable utility (NTU)
 - The payoff that a user receives in a coalition is pre-determined, and hence the value of a coalition cannot be described by a function
 - -v(S) is a set of payoff vectors that the players in S can achieve

$$v(S) \subseteq \mathbb{R}^{|S|}$$

Cooperative Eavesdropping: Gains

- Consider a coalition *S* of micro-grids
 - The micro-grids are divided into sellers and buyers
 - Consider an ordering π over the buyers in *S*
 - Inside S, each buyer attempts to buy from the seller that yields the smallest power loss
- For a given π , the losses over the distribution lines due to *S* can be given by (S_s subset of sellers, S_b subset of buyers):

$$u(S,\Pi) = \cdot$$

Losses for power exchange between seller *i* and buyer *j* which depends mainly on the demand, the resistance and the voltage for distribution

DIS INSTITUTE OF TECHNOLOG

Power loss between seller i and the macro-grid (depends on transformer losses, surplus, and resistance)

 $\sum_{S_s, j \in S_b} P_{ij}^{\text{loss}} + \sum_{i \in S_s} P_{i0}^{\text{loss}} + \sum_{j \in S_s} P_{i0}^{\text{lo$

Power loss between buyer *j* and the macro-grid (depends on transformer losses, energy need, and resistance)

Coalitional game formulation: Value function

• Given these power losses, for any coalition S, we define the value function as

$$v(S) = \max_{\Pi \in \mathfrak{T}_S} u(S, \Pi)$$

– The maximum is over all orderings of buyers

- The utility represents a **cost paid** per unit of **power loss**, hence, it can be considered as transferable utility
- To divide the utility between the players, we adopt a fair division proportional to the non-cooperative utility of each user:

$$\phi_i = \alpha_i \left(v(S) - \sum_{j \in S} v(\{j\}) \right) + v(\{i\}),$$

Weight chosen according to microgrid *i*'s non-cooperative utility

Coalition Formation: Merge and Split

• Define the Pareto order preference relation between two collections of coalitions *R* and *S*

$$\mathcal{R} \triangleright \mathcal{S} \Longleftrightarrow \{\phi_j(\mathcal{R}) \ge \phi_j(\mathcal{S}) \ \forall \ j \in \mathcal{R}, \mathcal{S}\},\$$

with at least one strict inequality (>) for a player k.

- Merge rule: merge any group of coalitions where
 {∪_{j=1}^lS_j} ▷ {S₁,...,S_l}
- Split rule: split any group of coalitions where $\{S_1, \ldots, S_l\} \triangleright \{\cup_{j=1}^l S_j\}$
- A decision to merge (split) is an agreement between all players to form (break) a new coalition

Power & Energy Society*

Simulation results

13

Summary

- Cooperative energy trading in micro-grid networks can be enabled using **coalitional games**
- Coalition formation for cooperative energy trading
 - Reduce the power losses over distribution lines and/or transformers
 - Create a local energy exchange market between microgrids
 - Enable the micro-grids to better serve their consumers
- Future work
 - Capturing the seller-buyer interactions using auctions
 - Other types of games
 - Studying pricing schemes

